Combinatorics and Graph Theory

M. Math. II
Mid-Term Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple.

1. Prove that in any non-trivial Steiner system $S(t, k, v)$, we must have

$$
v \geq(t+1)(k-t+1)
$$

2. Prove that the existence of a $(t+1)-(v+1, k+1, \lambda)$ desogn implies the existence of a $t-(v, k, \lambda)$ design. Give an example to show that the converse is not true.
3. Let G be a k-regular graph with $k>1$. If G has a cut-edge, prove that k must be odd and it must have at least $2 k+4$ vertices.
4. Let k be a natural number and let Q_{k} denote the graph whose vertices are k-tules with entries in $\{0,1\}$ and edges are pairs of k-tuples that differ in exactly one position. Prove that the complete bipartite graph $K_{2,3}$ is not a subgraph of Q_{k}.
5. Prove or disprove: Every graph contains at least one non cut-vertex.
